Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.150
Filtrar
1.
Vet Res ; 55(1): 46, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589976

RESUMO

Pasteurella multocida is an important zoonotic respiratory pathogen capable of infecting a diverse range of hosts, including humans, farm animals, and wild animals. However, the precise mechanisms by which P. multocida compromises the pulmonary integrity of mammals and subsequently induces systemic infection remain largely unexplored. In this study, based on mouse and rabbit models, we found that P. multocida causes not only lung damage but also bacteremia due to the loss of lung integrity. Furthermore, we demonstrated that bacteremia is an important aspect of P. multocida pathogenesis, as evidenced by the observed multiorgan damage and systemic inflammation, and ultimately found that this systemic infection leads to a cytokine storm that can be mitigated by IL-6-neutralizing antibodies. As a result, we divided the pathogenesis of P. multocida into two phases: the pulmonary infection phase and the systemic infection phase. Based on unbiased RNA-seq data, we discovered that P. multocida-induced apoptosis leads to the loss of pulmonary epithelial integrity. These findings have been validated in both TC-1 murine lung epithelial cells and the lungs of model mice. Conversely, the administration of Ac-DEVD-CHO, an apoptosis inhibitor, effectively restored pulmonary epithelial integrity, significantly mitigated lung damage, inhibited bacteremia, attenuated the cytokine storm, and reduced mortality in mouse models. At the molecular level, we demonstrated that the FAK-AKT-FOXO1 axis is involved in P. multocida-induced lung epithelial cell apoptosis in both cells and animals. Thus, our research provides crucial information with regard to the pathogenesis of P. multocida as well as potential treatment options for this and other respiratory bacterial diseases.


Assuntos
Bacteriemia , Infecções por Pasteurella , Pasteurella multocida , Doenças dos Roedores , Humanos , Animais , Coelhos , Camundongos , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/microbiologia , Proteínas Proto-Oncogênicas c-akt , Síndrome da Liberação de Citocina/patologia , Síndrome da Liberação de Citocina/veterinária , Pulmão/patologia , Bacteriemia/veterinária , Bacteriemia/patologia , Apoptose , Mamíferos , Proteína Forkhead Box O1
2.
BMC Vet Res ; 20(1): 147, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643185

RESUMO

BACKGROUND: Gamithromycin is an effective therapy for bovine and swine respiratory diseases but not utilized for rabbits. Given its potent activity against respiratory pathogens, we sought to determine the pharmacokinetic profiles, antimicrobial activity and target pharmacokinetic/pharmacodynamic (PK/PD) exposures associated with therapeutic effect of gamithromycin against Pasteurella multocida in rabbits. RESULTS: Gamithromycin showed favorable PK properties in rabbits, including high subcutaneous bioavailability (86.7 ± 10.7%) and low plasma protein binding (18.5-31.9%). PK analysis identified a mean plasma peak concentration (Cmax) of 1.64 ± 0.86 mg/L and terminal half-life (T1/2) of 31.5 ± 5.74 h after subcutaneous injection. For P. multocida, short post-antibiotic effects (PAE) (1.1-5.3 h) and post-antibiotic sub-inhibitory concentration effects (PA-SME) (6.6-9.1 h) were observed after exposure to gamithromycin at 1 to 4× minimal inhibitory concentration (MIC). Gamithromycin demonstrated concentration-dependent bactericidal activity and the PK/PD index area under the concentration-time curve over 24 h (AUC24h)/MIC correlated well with efficacy (R2 > 0.99). The plasma AUC24h/MIC ratios of gamithromycin associated with the bacteriostatic, bactericidal and bacterial eradication against P. multocida were 15.4, 24.9 and 27.8 h in rabbits, respectively. CONCLUSIONS: Subcutaneous administration of 6 mg/kg gamithromycin reached therapeutic concentrations in rabbit plasma against P. multocida. The PK/PD ratios determined herein in combination with ex vivo activity and favorable rabbit PK indicate that gamithromycin may be used for the treatment of rabbit pasteurellosis.


Assuntos
Doenças dos Bovinos , Lagomorpha , Infecções por Pasteurella , Pasteurella multocida , Doenças dos Suínos , Coelhos , Animais , Bovinos , Suínos , Antibacterianos/uso terapêutico , Antibacterianos/farmacocinética , Infecções por Pasteurella/tratamento farmacológico , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/microbiologia , Macrolídeos/uso terapêutico , Macrolídeos/farmacocinética , Testes de Sensibilidade Microbiana/veterinária , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Suínos/tratamento farmacológico
3.
ScientificWorldJournal ; 2024: 5605552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655561

RESUMO

Background: Pasteurella species are frequently encountered as serious diseases in small ruminants. It is the main cause of respiratory pasteurellosis in sheep and goats of all age groups. Methods: The cross-sectional study was conducted from December 2022 to April 2023 in Haramaya district, eastern Ethiopia, to isolate and identify Pasteurella multocida and Mannheimia haemolytica and estimate their prevalence, associated risk factors, and antimicrobial sensitivity of isolates in small ruminants using a purposive sampling method. A total of 384 samples (156 nasal swabs from clinic cases and 228 lung swabs from abattoir cases) were collected. STATA 14 software was used to analyze the data. In addition, multivariable logistic regression analysis was performed to assess an association of risk factors. Results: Out of the 384 samples examined, 164 were positive for pasteurellosis, resulting in a 42.70% prevalence. Similarly, 63 (38.4%) of the 164 positive results were from nasal swabs, while 101 (61.6%) came from lung samples. M. haemolytica accounted for 126 (76.82%) of the isolates, while P. multocida accounted for 38 (23.17%). Of the 63 nasal swab isolates, 33 (37%) were from goats and 30 (42.8%) were from sheep. And 17 (10.89%) and 46 (29.58%), respectively, were P. multocida and M. haemolytica. Of the 46 (40%) of the 101 (44.3%) isolates of the pneumonic lung, samples were from goats, while 55 (48.47%) were from sheep. In this study, the risk factors (species, age, and body condition score) were found to be significant (p < 0.05). Pasteurella isolates evaluated for antibiotic susceptibility were highly resistant to oxacillin (90.90%), followed by gentamycin (72.72%), and penicillin (63.63%). However, the isolates were highly sensitive to chloramphenicol (90.90%), followed by tetracycline (63.63%), and ampicillin (54.54%). Conclusion: This study showed that M. haemolytica and P. multocida are the common causes of mannheimiosis and pasteurellosis in small ruminants, respectively, and isolates were resistant to commonly used antibiotics in the study area. Thus, an integrated vaccination strategy, antimicrobial resistance monitoring, and avoidance of stress-inducing factors are recommended.


Assuntos
Antibacterianos , Cabras , Mannheimia haemolytica , Testes de Sensibilidade Microbiana , Pasteurella multocida , Doenças dos Ovinos , Animais , Pasteurella multocida/efeitos dos fármacos , Pasteurella multocida/isolamento & purificação , Mannheimia haemolytica/efeitos dos fármacos , Mannheimia haemolytica/isolamento & purificação , Etiópia/epidemiologia , Ovinos/microbiologia , Cabras/microbiologia , Antibacterianos/farmacologia , Estudos Transversais , Doenças dos Ovinos/microbiologia , Doenças dos Ovinos/epidemiologia , Doenças das Cabras/microbiologia , Doenças das Cabras/epidemiologia , Prevalência , Fatores de Risco , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/epidemiologia
4.
Vet Microbiol ; 292: 110046, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38471428

RESUMO

Pasteurella multocida is a leading cause of respiratory disorders in pigs. However, the genotypes and antimicrobial resistance characteristics of P. multocida from pigs in China have not been reported frequently. In this study, we investigated 381 porcine strains of P. multocida collected in China between 2013 and 2022. These strains were assigned to capsular genotypes A (69.55%, n = 265), D (27.82%, n =106), and F (2.62%, n = 10); or lipopolysaccharide genotypes L1 (1.31%, n = 5), L3 (24.41%, n = 93), and L6 (74.28%, n = 283). Overall, P. multocida genotype A:L6 (46.46%) was the most-commonly identified type, followed by D:L6 (27.82%), A:L3 (21.78%), F:L3 (2.62%), and A:L1 (1.31%). Antimicrobial susceptibility testing showed that a relatively high proportion of strains were resistant to tetracycline (66.67%, n = 254), and florfenicol (35.17%, n = 134), while a small proportion of strains showed resistance phenotypes to enrofloxacin (10.76%, n = 41), ampicillin (8.40%, n = 32), tilmicosin (7.09%, n = 27), and ceftiofur (2.89%, n = 11). Notably, Illumina short-read and Nanopore long-read sequencing identified a chromosome-borne tigecycline-resistance gene cluster tmexCD3-toprJ1 in P. multocida. The structure of this cluster was highly similar to the respective structures found in several members of Proteus or Pseudomonas. It is assumed that the current study identified the tmexCD3-toprJ1 cluster for the first time in P. multocida.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Doenças dos Suínos , Suínos , Animais , Pasteurella multocida/genética , Tigeciclina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Enrofloxacina , Família Multigênica , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/tratamento farmacológico , Doenças dos Suínos/tratamento farmacológico
5.
Microbiol Spectr ; 12(4): e0380523, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38426766

RESUMO

Pasteurella multocida is an upper respiratory tract commensal in several mammal and bird species but can also cause severe disease in humans and in production animals such as poultry, cattle, and pigs. In this study, we performed whole-genome sequencing of P. multocida isolates recovered from a range of human infections, from the mouths of cats, and from wounds on dogs. Together with publicly available P. multocida genome sequences, we performed phylogenetic and comparative genomic analyses. While isolates from cats and dogs were spread across the phylogenetic tree, human infections were caused almost exclusively by subsp. septica strains. Most of the human isolates were capsule type A and LPS type L1 and L3; however, some strains lacked a capsule biosynthesis locus, and some strains contained a novel LPS outer-core locus, distinct from the eight LPS loci that can currently be identified using an LPS multiplex PCR. In addition, the P. multocida strains isolated from human infections contained novel mobile genetic elements. We compiled a curated database of known P. multocida virulence factor and antibiotic resistance genes (PastyVRDB) allowing for detailed characterization of isolates. The majority of human P. multocida isolates encoded a reduced range of iron receptors and contained only one filamentous hemagglutinin gene. Finally, gene-trait analysis identified a putative L-fucose uptake and utilization pathway that was over-represented in subsp. septica strains and may represent a novel host predilection mechanism in this subspecies. Together, these analyses have identified pathogenic mechanisms likely important for P. multocida zoonotic infections.IMPORTANCEPasteurella multocida can cause serious infections in humans, including skin and wound infections, pneumonia, peritonitis, meningitis, and bacteraemia. Cats and dogs are known vectors of human pasteurellosis, transmitting P. multocida via bite wounds or contact with animal saliva. The mechanisms that underpin P. multocida human predilection and pathogenesis are poorly understood. With increasing identification of antibiotic-resistant P. multocida strains, understanding these mechanisms is vital for developing novel treatments and control strategies to combat P. multocida human infection. Here, we show that a narrow range of P. multocida strains cause disease in humans, while cats and dogs, common vectors for zoonotic infections, can harbor a wide range of P. multocida strains. We also present a curated P. multocida-specific database, allowing quick and detailed characterization of newly sequenced P. multocida isolates.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Humanos , Gatos , Bovinos , Animais , Suínos , Cães , Pasteurella multocida/genética , Filogenia , Lipopolissacarídeos/metabolismo , Infecções por Pasteurella/veterinária , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Zoonoses , Mamíferos
6.
Vet Med Sci ; 10(3): e1424, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38519838

RESUMO

BACKGROUND: Companion animals, including dogs and cats, are frequently identified as sources of Pasteurella multocida, a bacterium that can be transmitted to humans and cause infections. OBJECTIVES: This survey defines the prevalence, antibiotic sensitivity, capsular types, lipopolysaccharide (LPS) types and virulence factors of P. multocida isolated from cats. METHODS: A total of 100 specimens from various cat breeds were collected. P. multocida was characterized using both biochemical tests and PCR. Genotypes of isolates were determined using capsular and LPS typing methods. Additionally, virulotyping was performed by detecting the presence of 12 virulence-associated genes. Disk diffusion was used to determine the antibiotic sensitivity of the isolates. RESULTS: The prevalence of P. multocida in cats was 29%. Among the isolates, the majority were capsular type A (96.5%) and type D (3.4%), with a predominant presence of type A. Twenty-six of the isolates (89.66%) belonged to LPS genotype L6, whereas three isolates (10.3%) belonged to genotype L3. Among the 12 virulence genes examined, sodC, oma87, ptfA, nanB and ompH showed remarkable prevalence (100%). The toxA gene was detected in four isolates (13.8%). Variations were observed in other virulence genes. The nanH gene was present in 93.1% of the isolates, whereas the pfhA gene was detected in 58.6% of the isolates. The exbD-tonB, hgbB, sodA and hgbA genes showed prevalence rates of 96.5%, 96.5%, 96.5% and 82.8%, respectively. Additionally, particular capsule and LPS types were associated with specific virulence genes. Specifically, the toxA and pfhA genes were found to be more prevalent in isolates with capsular type A and LPS genotype L6. Most isolates were resistant to ampicillin, clindamycin, lincomycin, streptomycin and penicillin. CONCLUSIONS: According to this epidemiological and molecular data, P. multocida from cats possess several virulence-associated genes and are resistant to antimicrobial medicines commonly used in humans and animals. Thus, it is crucial to consider the public health concerns of P. multocida in humans.


Assuntos
Doenças do Gato , Doenças do Cão , Infecções por Pasteurella , Pasteurella multocida , Gatos , Animais , Humanos , Cães , Pasteurella multocida/genética , Infecções por Pasteurella/epidemiologia , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/microbiologia , Antibacterianos/farmacologia , Lipopolissacarídeos , Doenças do Gato/epidemiologia
7.
BMC Vet Res ; 20(1): 94, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461234

RESUMO

Pasteurella multocida type A (PmA) mainly causes respiratory diseases such as pneumonia in bovines, leading to great economic losses to the breeding industry. At present, there is still no effective commercial vaccine against PmA infection. In this study, a mutant strain (PmCQ2Δ4555-4580) with brand-new phenotypes was obtained after serially passaging at 42 °C. Whole genome resequencing and PCR analysis showed that PmCQ2Δ4555-4580 missed six genes, including PmCQ2_004555, PmCQ2_004560, PmCQ2_004565, PmCQ2_004570, PmCQ2_004575, and PmCQ2_004580. Importantly, the virulence of PmCQ2Δ4555-4580 was reduced by approximately 2.8 × 109 times in mice. Notably, live PmCQ2Δ4555-4580 could provide 100%, 100% and 40% protection against PmA, PmB and PmF, respectively; and inactivated PmCQ2Δ4555-4580 could provide 100% and 87.5% protection against PmA and PmB. Interestingly, immune protection-related proteins were significantly upregulated in PmCQ2Δ4555-4580 based on RNA-seq and bioinformatics analysis. Meaningfully, by in vitro expression, purification and in vivo immunization, 12 proteins had different degrees of immune protective effects. Among them, PmCQ2_008205, PmCQ2_010435, PmCQ2_008190, and PmCQ2_004170 had the best protective effect, the protection rates against PmA were 50%, 40%, 30%, and 30%, respectively, and the protective rates against PmB were 62.5%, 42.9%, 37.5%, and 28.6%, respectively. Collectively, PmCQ2Δ4555-4580 is a potential vaccine candidate for the prevention of Pasteurellosis involving in high expression of immune protective related proteins.


Assuntos
Doenças dos Bovinos , Infecções por Pasteurella , Pasteurella multocida , Doenças dos Roedores , Animais , Camundongos , Bovinos , Pasteurella multocida/genética , Vacinas Atenuadas , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária , Imunização/veterinária , Vacinação/veterinária , Vacinas Bacterianas
8.
Microbiol Spectr ; 12(4): e0365423, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38385714

RESUMO

Pasteurella multocida serogroup F can infect a number of animals. However, the pathogenicity and genomic features of this serogroup are still largely unknown. In the present study, the pathogenicity and genomic sequences of 19 rabbit-sourced P. multocida serogroup F isolates were determined. The 19 isolates were highly pathogenic for rabbits causing severe pathologic lesions and high mortality in inoculated rabbits. Nevertheless, the pathologic lesions in rabbits caused by the 19 isolates were distinct from those caused by the previously reported high-virulent serogroup F strains J-4103 (rabbit), P-4218 (turkey), and C21724H3km7 (chicken). Moreover, the 19 isolates were avirulent to white feather broilers. The genomes of the 19 isolates were determined to understand the pathogenicity of these isolates. The finding of a number of functional genes in the 19 isolates by comparison with the low-virulent rabbit-sourced serogroup F strain s4 might contribute to the high virulence of these isolates. Notably, polymorphisms were determined in the lipopolysaccharide outer core biosynthetic genes natC and gatF among the serogroup F strains of different hosts. However, the sequences of natC and gatF from rabbit-sourced strains (except for SD11) were identical, which might be responsible for the host specific of the 19 isolates. The observations and findings in this study would be helpful for the understanding of the pathogenicity variation and host predilection of P. multocida. IMPORTANCE: The 19 rabbit-sourced Pasteurella multocida serogroup F isolates showing high virulence to rabbits were avirulent to the broilers. Notably, polymorphisms were determined in the lipopolysaccharide outer core biosynthetic genes natC and gatF among all serogroup F strains of different hosts. However, the sequences of natC and gatF from rabbit-sourced strains (except for SD11) were identical, which might be responsible for the host specific of the 19 isolates.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Animais , Coelhos , Pasteurella multocida/genética , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/patologia , Sorogrupo , Galinhas , Lipopolissacarídeos , Genômica
9.
Braz J Biol ; 84: e280780, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422302

RESUMO

The paper describes data from the study of cultural, morphological, and biochemical properties and the pathogenicity and virulence of epizootic isolates of Pasteurella multocida obtained from cattle and saigas. The study aimed to investigate the properties of P. multocida isolated from saigas and cattle during their seasonal migration, with a focus on its role in the epizootic process and potential transmission to farm animals. The research was conducted in a laboratory setting at the West Kazakhstan Agrarian-Technical University. White mice, saigas, and cattle were examined, and pathological and bacteriological analyses were performed on tissues and secretions. Pathogenicity, virulence, and toxigenicity of the isolated Pasteurella cultures were determined through biological tests on white mice. The morphological, cultural, and biochemical properties of the isolates were studied using standard microbiological methods. The study found that P. multocida isolates from both saigas and cattle exhibited high pathogenicity and virulence when tested on white mice. The isolates from sick and dead animals displayed 65.3 and 83.3% pathogenicity, respectively. The isolates were toxic to white mice, with filtrate dilutions showing 100% toxigenicity. Comparative analysis showed morphological and cultural similarities between Pasteurella isolates from saigas and cattle, confirming their identity. This research demonstrates that P. multocida, isolated from both saigas and cattle, contributes to the epizootic process and poses a threat to farm animals. Saigas, in particular, play a role in disease transmission during seasonal migrations. Understanding the ecological interactions between wild and farm animals is crucial for implementing preventive measures to control the spread of infectious diseases, emphasizing the need for comprehensive monitoring and intervention strategies.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Humanos , Camundongos , Animais , Bovinos , Infecções por Pasteurella/veterinária , Estações do Ano , Virulência , Fatores de Virulência
10.
Vet Microbiol ; 290: 109990, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228079

RESUMO

The bacterial agent that causes fowl cholera, Pasteurella multocida, was isolated from two deceased wild waterbirds in Victoria, Australia, in 2013. Whole genome sequence analysis placed the isolates into ST20, a subtype described in farmed chickens from Queensland, Australia and more recently in feedlot cattle and in pigs across a broader area of the continent. This study also found ST20 between 2009 and 2022 on three chicken farms and two turkey farms located in four Australian states. The sequences of 25 of these ST20 isolates were compared to 280 P. multocida genomes from 23 countries and to 94 ST20 Illumina datasets from Queensland that have been deposited in public databases. The ST20 isolates formed a single phylogenetic clade and were clustered into four sub-groups with highly similar genomes, possessing either LPS type 1 or type 3 loci. Various repertoires of mobile genetic elements were present in isolates from farmed, but not wild birds, suggesting complex histories of spill-over between avian populations and gene acquisition within farm environments. No major antimicrobial resistance was predicted in any of the ST20 isolates by the genomic analysis. The closest relative of these isolates was a ST394 bovine respiratory tract isolate from Queensland, which differed from ST20 by only one allele and carried beta-lactam and tetracycline resistance genes. These findings underline the importance of understanding the role of wild and commercial birds in the maintenance of fowl cholera, and of implementing regular epidemiological surveillance and biosecurity management programmes in wildlife, as well as free-range poultry farms.


Assuntos
Doenças dos Bovinos , Cólera , Infecções por Pasteurella , Pasteurella multocida , Doenças das Aves Domésticas , Doenças dos Suínos , Animais , Bovinos , Suínos , Aves Domésticas , Fazendas , Galinhas , Filogenia , Cólera/veterinária , Doenças das Aves Domésticas/epidemiologia , Doenças das Aves Domésticas/microbiologia , Infecções por Pasteurella/epidemiologia , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/microbiologia , Animais Selvagens , Vitória
11.
J Antimicrob Chemother ; 79(1): 186-194, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38019670

RESUMO

OBJECTIVES: To investigate the population structure and antimicrobial resistance (AMR) of avian Pasteurella multocida in China. METHODS: Utilizing WGS analysis, we explored the phylogeny using a dataset of 546 genomes, comprising avian P. multocida isolates from China (n = 121), the USA (n = 165), Australia(n = 153), Bangladesh (n = 3) and isolates of other hosts from China (n = 104). We examined the integrative and conjugative element (ICE) structures and the distribution of their components carrying resistance genes, and reconstructed the evolutionary history of A:L1:ST129 (n = 110). RESULTS: The population structure of avian P. multocida in China was dominated by the A:L1:ST129 clone with limited genetic diversity. A:L1:ST129 isolates possessed a broader spectrum of resistance genes at comparatively higher frequencies than those from other hosts and countries. The novel putative ICEs harboured complex resistant clusters that were prevalent in A:L1:ST129. Bayesian analysis predicted that the A:L1:ST129 clone emerged around 1923, and evolved slowly. CONCLUSIONS: A:L1:ST129 appears to possess a host predilection towards avian species in China, posing a potential health threat to other animals. The complex AMR determinants coupled with high frequencies may strengthen the population dominance of A:L1:ST129. The extensive antimicrobial utilization in poultry farming and the mixed rearing practices could have accelerated AMR accumulation in A:L1:ST129. ICEs, together with their resistant clusters, significantly contribute to resistance gene transfer and facilitate the adaptation of A:L1:ST129 to ecological niches. Despite the genetic stability and slow evolution rate, A:L1:ST129 deserves continued monitoring due to its propensity to retain resistance genes, warranting global attention to preclude substantial economic losses.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Animais , Pasteurella multocida/genética , Infecções por Pasteurella/veterinária , Antibacterianos/farmacologia , Teorema de Bayes , Farmacorresistência Bacteriana , Genômica
12.
Genome ; 67(1): 13-23, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37639729

RESUMO

Pasteurella multocida causes acute/chronic pasteurellosis in porcine, resulting in considerable economic losses globally. The draft genomes of two Indian strains NIVEDIPm17 (serogroup D) and NIVEDIPm36 (serogroup A) were sequenced. A total of 2182-2284 coding sequences (CDSs) were predicted along with 5-6 rRNA and 45-46 tRNA genes in the genomes. Multilocus sequence analysis and LPS genotyping showed the presence of ST50: genotype 07 and ST74: genotype 06 in NIVEDIPm17 and NIVEDIPm36, respectively. Pangenome analysis of 61 strains showed the presence of 1653 core genes, 167 soft core genes, 750 shell genes, and 1820 cloud genes. Analysis of virulence-associated genes in 61 genomes indicated the presence of nanB, exbB, exbD, ptfA, ompA, ompH, fur, plpB, fimA, sodA, sodC, tonB, and omp87 in all strains. The 61 genomes contained genes encoding tetracycline (54%), streptomycin (48%), sulphonamide (28%), tigecycline (25%), chloramphenicol (21%), amikacin (7%), cephalosporin (5%), and trimethoprim (5%) resistance. Multilocus sequence type revealed that ST50 was the most common (34%), followed by ST74 (26%), ST13 (24%), ST287 (5%), ST09 (5%), ST122 (3%), and ST07 (2%). Single-nucleotide polymorphism and core genome-based phylogenetic analysis clustered the strains into three major clusters. In conclusion, we described the various virulence factors, mobile genetic elements, and antimicrobial resistance genes in the pangenome of P. multocida of porcine origin, besides the rare presence of LPS genotype 7 in serogroup D.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Animais , Suínos , Pasteurella multocida/genética , Filogenia , Lipopolissacarídeos , Infecções por Pasteurella/veterinária , Fatores de Virulência/genética
13.
Braz. j. biol ; 84: e254011, 2024. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1355886

RESUMO

Abstract Livestock is a fundamental part of the agriculture industry in Pakistan and contributes more than 11.53% to GDP. Among livestock species, the buffaloes are regarded as the black gold of Pakistan. Being the highest milk producers globally, Nili-Ravi buffaloes are the most famous ones. Buffaloes are affected by many endemic diseases, and "Hemorrhagic septicemia" (HS) is one of them. This study was designed to ascertain the effects of experimental exposure ofP. multocida B:2 (oral) and its immunogens, i.e., LPS (oral and intravenous) and OMP (oral and subcutaneous) on reproductive hormonal profiles in Nili-Ravi buffaloes. Repeated serum samples were collected from the jugular vein of experimental animals for 21 days (0, 02, 04, 08, 12, 16, 20, 24, 36, 48, 72, 120, 168, 216, 264, 360, 456 and 504 hours). Hormonal assays to determine the serum concentrations of Gonadotropin-releasing hormone (GnRH), Follicle-stimulating hormone (FSH), Luteinizing hormone (LH), Estrogen (E2) and progesterone (P4) were performed using (MyBioSource) commercial Elisa kits. The hormonal profile of all treatment groups of the buffalo heifers exhibited significant (P<0.05) variations as compared to the control group (G-1). These results indicate suppression in Nili-Ravi buffaloes' reproductive hormonal profile on exposure to P. multocida B:2 and its immunogens. This influence warrants that exposure to H.S may be a possible reason for delayed puberty and poor reproduction performance in Nili-Ravi buffaloes.


Resumo A pecuária é uma parte fundamental da indústria agrícola no Paquistão e contribui com 11,53% do PIB nacional. Entre as espécies de gado, os búfalos são considerados o ouro negro do Paquistão. Sendo os maiores produtores de leite em todo o mundo, os búfalos Nili-Ravi são os mais famosos. Os búfalos são afetados por muitas doenças endêmicas, entre as quais a "septicemia hemorrágica" (SH). Este estudo busca verificar os efeitos da exposição experimental de P. multocida B:2 (oral) e seus imunógenos, ou seja, LPS (oral e intravenoso) e OMP (oral e subcutâneo), nos perfis hormonais reprodutivos em búfalos Nili-Ravi. Amostras de soro repetidas foram coletadas da veia jugular de animais experimentais por 21 dias (0, 2, 4, 8, 12, 16, 20, 24, 36, 48, 72, 120, 168, 216, 264, 360, 456 e 504 horas). Os ensaios hormonais para determinar as concentrações séricas do hormônio liberador de gonadotrofina (GnRH), hormônio foliculoestimulante (FSH), hormônio luteinizante (LH), estrogênio (E2) e progesterona (P4) foram realizados usando kits comerciais Elisa (MyBioSource). O perfil hormonal de todos os grupos de tratamento das novilhas bubalinas apresentou variações significativas (P < 0,05) em relação ao grupo controle (G-1). Esses resultados indicam supressão no perfil hormonal reprodutivo de búfalos Nili-Ravi na exposição a P. multocida B:2 e seus imunógenos. Essa influência garante que a exposição à SH possa ser uma possível razão para o atraso da puberdade e o baixo desempenho reprodutivo em búfalos Nili-Ravi.


Assuntos
Animais , Feminino , Infecções por Pasteurella/veterinária , Reprodução , Hormônios Esteroides Gonadais/sangue , Búfalos , Progesterona , Bovinos , Lipopolissacarídeos , Hormônio Liberador de Gonadotropina , Pasteurella multocida
14.
Vet Res ; 54(1): 91, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845774

RESUMO

The microbiota in humans and animals play crucial roles in defense against pathogens and offer a promising natural source for immunomodulatory products. However, the development of physiologically relevant model systems and protocols for testing such products remains challenging. In this study, we present an experimental condition where various natural products derived from the registered lactic acid bacteria Ligilactobacillus salivarius CECT 9609, known for their immunomodulatory activity, were tested. These products included live and inactivated bacteria, as well as fermentation products at different concentrations and culture times. Using our established model system, we observed no morphological changes in the airway epithelium upon exposure to Pasteurella multocida, a common respiratory pathogen. However, early molecular changes associated with the innate immune response were detected through transcript analysis. By employing diverse methodologies ranging from microscopy to next-generation sequencing (NGS), we characterized the interaction of these natural products with the airway epithelium and their potential beneficial effects in the presence of P. multocida infection. In particular, our discovery highlights that among all Ligilactobacillus salivarius CECT 9609 products tested, only inactivated cells preserve the conformation and morphology of respiratory epithelial cells, while also reversing or altering the natural immune responses triggered by Pasteurella multocida. These findings lay the groundwork for further exploration into the protective role of these bacteria and their derivatives.


Assuntos
Produtos Biológicos , Ligilactobacillus salivarius , Infecções por Pasteurella , Pasteurella multocida , Humanos , Animais , Imunidade Inata , Células Epiteliais , Produtos Biológicos/farmacologia , Infecções por Pasteurella/microbiologia , Infecções por Pasteurella/veterinária
15.
Lett Appl Microbiol ; 76(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37796828

RESUMO

Pasteurella multocida is widely distributed in all pig-rearing countries, affecting the economic viability and profitability of pig production. The present research highlights the molecular characterization and pathology of untypeable capsular serotypes of P. multocida in slaughtered pigs from prominent pig-rearing states of India. The prevalence of Pasteurellosis was 27.17% by Pasteurella multocida specific Pasteurella multocida specific PCR (PM-PCR). assay, while isolation rate was 7.62%. The microscopic lesions of bronchopneumonia, tonsillitis, and the presence of bacterial antigens in immunohistochemistry confirmed P. multocida with pathologies. In capsular typing, the majority of the isolates were untypeable with prevalence of 52.15% and 43.58% in molecular and microbiological methods, respectively. All the isolates showed the uniform distribution of virulence genes such as exbB, nanB, sodC, plpB, and oma87 (100%), while the variations were observed in ptfA, hasR, ptfA, pfhA, hsf-1, and plpE genes. The untypeable isolates showed higher prevalence of hsf-1 gene as compared to others. The untypeable serotypes showed a higher degree of resistance to ampicillin, amoxicillin, and penicillin antibiotics. The mouse pathogenicity testing of untypeable capsular isolates confirmed its pathogenic potential. The higher frequency of pathogenic untypeable isolates with antibiotic resistance profile might pose a serious threat to the pigs, and therefore, preventive measures should be adopted for effective control.


Assuntos
Anti-Infecciosos , Infecções por Pasteurella , Pasteurella multocida , Animais , Suínos , Camundongos , Pasteurella multocida/genética , Virulência/genética , Sorogrupo , Fatores de Virulência/genética , Infecções por Pasteurella/veterinária , Infecções por Pasteurella/epidemiologia , Infecções por Pasteurella/microbiologia , Índia
16.
World J Microbiol Biotechnol ; 39(12): 335, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37807011

RESUMO

The present study aimed to isolate Pasteurella multocida (P. multocida) from pulmonary cases in several avian species and then investigate the histopathological features, antimicrobial resistance determinants, virulence characteristics, and risk factors analysis of the isolates in each species in correlation with epidemiological mapping of pasteurellosis in Sharkia Governorate, Egypt. The obtained data revealed a total occurrence of 9.4% (30/317) of P. multocida among the examined birds (chickens, ducks, quails, and turkeys). The incidence rate was influenced by avian species, climate, breed, age, clinical signs, and sample type. Antimicrobial susceptibility testing revealed that all isolates were sensitive to florfenicol and enrofloxacin, while 86.6 and 73.3% of the isolates displayed resistance to amoxicillin-clavulanic acid and erythromycin, respectively. All of the P. multocida isolates showed a multiple-drug resistant pattern with an average index of 0.43. Molecular characterization revealed that the oma87, sodA, and ptfA virulence genes were detected in the all examined P. multocida isolates. The ermX (erythromycin), blaROB-1 (ß-lactam), and mcr-1(colistin) resistance genes were present in 60, 46.6, and 40% of the isolates, respectively. Ducks and quails were the most virulent and harbored species of antimicrobial-resistant genes. These results were in parallel with postmortem and histopathological examinations which detected more severe interstitial pneumonia lesions in the trachea and lung, congestion, and cellular infiltration especially in ducks. Epidemiological mapping revealed that the Fakous district was the most susceptible to pasteurellosis infection. Thus, farmers are recommended to monitor their flocks for signs of respiratory disease, seek veterinary care promptly if any birds are sick, and avoid the random usage of antibiotics. In conclusion, this study presents a comprehensive picture of the risk factors in correlation to the pathognomonic characteristics of P. multocida infection in poultry sectors to help in developing more effective strategies for prevention and control.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Animais , Pasteurella multocida/genética , Egito/epidemiologia , Galinhas , Infecções por Pasteurella/epidemiologia , Infecções por Pasteurella/veterinária , Antibacterianos/farmacologia , Eritromicina/farmacologia
17.
BMC Vet Res ; 19(1): 192, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803295

RESUMO

Pasteurella multocida is a pathogen that can infect humans and animals. A ghost is an empty bacterial body devoid of cytoplasm and nucleic acids that can be efficiently presented by antigen-presenting cells. To study a novel ghost vector vaccine with cross-immune protection, we used bacteriophage PhiX174 RF1 and Pasteurella multocida standard strain CVCC393 as templates to amplify the split genes E and OmpH to construct a bidirectional expression vector E'-OmpH-pET28a-ci857-E. This is proposed to prepare a ghost Escherichia coli (engineered bacteria) capable of attaching and producing Pasteurella multocida OmpH on the inner membrane of Escherichia coli (BL21). The aim is to assess the antibody levels and the effectiveness of immune protection by conducting a mouse immunoprotective test. The bidirectional expression vector E'-OmpH-pET28a-ci857-E was successfully constructed. After induction by IPTG, identification by SDS-PAGE, western blot, ghost culture and transmission electron microscope detection, it was proven that the Escherichia coli ghost anchored to Pasteurella multocida OmpH was successfully prepared. The immunoprotective test in mice showed that the antibody levels of Pasteurella multocida inactivated vaccine, OmpH, ghost (aluminum glue adjuvant) and ghost (Freund's adjuvant) on day 9 after immunization were significantly different from those of the PBS control group (P < 0.01). The immune protection rates were 100%, 80%, 75%, and 65%, respectively, and the PBS negative control was 0%, which proved that they all had specific immune protection effects. Therefore, this study lays the foundation for the further study of ghosts as carriers of novel vaccine-presenting proteins.


Assuntos
Infecções por Pasteurella , Pasteurella multocida , Vacinas , Humanos , Animais , Camundongos , Pasteurella multocida/genética , Pasteurella multocida/metabolismo , Infecções por Pasteurella/prevenção & controle , Infecções por Pasteurella/veterinária , Escherichia coli/genética , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas
18.
Vet Res ; 54(1): 73, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684678

RESUMO

Pasteurella multocida is a gram-negative bacterium that causes serious diseases in a wide range of animal species. Inflammasomes are intracellular multimolecular protein complexes that play a critical role in host defence against microbial infection. Our previous study showed that bovine P. multocida type A (PmCQ2) infection induces NLRP3 inflammasome activation. However, the exact mechanism underlying PmCQ2-induced NLRP3 inflammasome activation is not clear. Here, we show that NLRP3 inflammasome activation is positively regulated by a scaffold protein called receptor for activated C kinase 1 (RACK1). This study shows that RACK1 expression was downregulated by PmCQ2 infection in primary mouse peritoneal macrophages and mouse tissues, and overexpression of RACK1 prevented PmCQ2-induced cell death and reduced the numbers of adherent and invasive PmCQ2, indicating a modulatory role of RACK1 in the cell death that is induced by P. multocida infection. Next, RACK1 knockdown by siRNA significantly attenuated PmCQ2-induced NLRP3 inflammasome activation, which was accompanied by a reduction in the protein expression of interleukin (IL)-1ß, pro-IL-1ß, caspase-1 and NLRP3 as well as the formation of ASC specks, while RACK1 overexpression by pcDNA3.1-RACK1 plasmid transfection significantly promoted PmCQ2-induced NLRP3 inflammasome activation; these results showed that RACK1 is essential for NLRP3 inflammasome activation. Furthermore, RACK1 knockdown decreased PmCQ2-induced NF-κB activation, but RACK1 overexpression had the opposite effect. In addition, the immunofluorescence staining and immunoprecipitation results showed that RACK1 colocalized with NLRP3 and that NEK7 and interacted with these proteins. However, inhibition of potassium efflux significantly attenuated the RACK1-NLRP3-NEK7 interaction. Our study demonstrated that RACK1 plays an important role in promoting NLRP3 inflammasome activation by regulating NF-κB and promoting NLRP3 inflammasome assembly.


Assuntos
Doenças dos Bovinos , Infecções por Pasteurella , Pasteurella multocida , Animais , Bovinos , Camundongos , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , NF-kappa B , Infecções por Pasteurella/veterinária , Receptores de Quinase C Ativada
19.
Vet Microbiol ; 285: 109848, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37722207

RESUMO

Interferon-γ (IFN-γ) is a pleiotropic cytokine that regulates diverse biological functions, including modulation of inflammatory response and innate and adaptive immunity. In our study, we found that IFN-γ plays an important role in the regulation of Pasteurella multocida toxin-associated pneumonia. In work described here, we demonstrated that rPMT induced a lethal pneumonia in WT mice and the severity of the pneumonia was substantially alleviated in IFN-γ-deficient mice, IFN-γ deficiency significantly elevated the survival rate and reduced the pathological lesions of the lungs after rPMT challenged. Notably, IFN-γ deficiency significantly decreased myeloperoxidase (MPO) expression abundance in the lung tissue, and the MPO was mainly expressed in the lung tissue injury region of WT mice. More importantly, IFN-γ deficiency impaired the activation of PANoptosis specific markers, including the caspase 3, GSDMD, and MLKL, and reduced the expression of IL-1ß. Cumulatively, this study demonstrates that IFN-γ promotes PANoptosis in PMT induced pneumonia in mice, providing a basis for studying the pathogenic mechanism of PMT.


Assuntos
Toxinas Bacterianas , Infecções por Pasteurella , Pasteurella multocida , Pneumonia , Camundongos , Animais , Interferon gama/genética , Proteínas de Bactérias/metabolismo , Pneumonia/veterinária , Infecções por Pasteurella/veterinária
20.
J Vet Med Sci ; 85(8): 858-866, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37407445

RESUMO

The biotypic and genotypic features of Pasteurella canis isolated from dogs, cats, and humans were clarified by repetitive sequence-based fingerprinting and nucleotide sequences encoding trehalose-6-phosphate hydrolase (treC). Thirty P. canis and 48 P. multocida isolates were collected from dogs, cats, and humans to perform biotyping. The genotyping of P. canis by fingerprinting was followed by dendrogram construction. The whole-genome sequences (WGSs) were searched for the enzyme-coding nucleotide sequences around the main and adjacent loci constituting the operon. Full-length nucleotide sequences encoding the enzyme were determined using polymerase chain reaction and direct sequencing. Biotypic results were compared to the dendrogram and nucleotide sequence data. We observed a difference in trehalose fermentation with a positivity rate of 46.7%. Two (A-1/A-2) and three (B-1/B-2/B-3) clades were located on the dendrograms generated based on two repetitive sequence-based fingerprinting techniques, showing no association between trehalose fermentation and the clades. Based on the WGSs, two variants of the gene, namely, a 1,641 bp gene treC and a pseudogene (1,335 bp) of treC with its first 306 nucleotides deleted, were observed. Trehalose-positive isolates harbored treC, whereas trehalose-negative isolates lacked treC with or without the pseudogene. Our observations suggest biotypic and genotypic diversity among the P. canis isolates from animal and human hosts, with respect to trehalose fermentation and treC nucleotide sequences. This is the first report on the diversity of treC nucleotide sequences among these isolates.


Assuntos
Doenças do Cão , Infecções por Pasteurella , Pasteurella multocida , Humanos , Cães , Animais , Sequência de Bases , Trealose , Infecções por Pasteurella/veterinária , Fermentação , Pasteurella multocida/genética , Genótipo , Doenças do Cão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...